Visualizing Fuchsian Groups David Dumas

Dec 4, 2019 - ICERM Special Interest Seminar

A Fuchsian group is a discrete subgroup $\Gamma<\operatorname{PSL}(2, \mathbb{R})$.
Fuchsian groups correspond to hyperbolic 2-orbifolds, because $\operatorname{PSL}(2, \mathbb{R}) \simeq \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)$.

Question: How can we see a Fuchsian group?
Note: Asking about the set Γ and not the quotient \mathbb{H}^{2} / Γ.

A common approach

Draw orbits (of points, polygons, etc.) in \mathbb{H}^{2}

Another idea

Draw the entire group!

* Of course we will actually draw a large but finite subset.

Cartan: A connected Lie group is diffeomorphic to $\mathrm{K} \times \mathbb{R}^{\mathrm{n}}$ where K is a maximal compact subgroup.
E.g. $\operatorname{PSL}(2, \mathbb{R}) \simeq \mathbb{S}^{1} \times \mathbb{R}^{2} \simeq \mathbb{S}^{1} \times \mathbb{D}^{2}$, an open solid torus.

Within this, Γ is a discrete subset.

Hyperbolic interpretation

$\operatorname{PSL}(2, \mathbb{R}) \simeq \mathrm{T}^{1} \mathbb{H}^{2}=$ the unit tangent bundle
The diffeomorphism is the orbit map of a point.

$A \leftrightarrow(z, \theta)$
E.g. A $\in \operatorname{PSL}(2, \mathbb{R})$ can be identified with a point in the unit disk model of \mathbb{H}^{2}, and $\theta \in S^{1}$ the direction of a tangent vector.

Clifford Torus

The Clifford torus in \mathbb{S}^{3} is the set of $\mathrm{v} /\|\mathrm{v}\|$ where

$$
v=(\cos (s), \sin (s), \cos (t), \sin (t)) .
$$

It divides $\mathbb{S}^{3} \simeq \mathbb{R}^{3} \cup\{\infty\}$ into two congruent solid tori, either of which can be taken as a model of $\operatorname{PSL}(2, \mathbb{R})$.

Interior torus model

Exterior torus model

In the exterior torus model, it is natural to make the point at infinity correspond to the identity element of $\operatorname{PSL}(2, \mathbb{R})$.

Projection Formula

Let $\vec{u}=\left.\frac{\partial}{\partial y}\right|_{0}$ in the unit disk model of \mathbb{H}^{2}.
For $A \in \operatorname{PSL}(2, \mathbb{R})$ let

$$
v=\left(\operatorname{Re} A(0), \operatorname{Im} A(0), \frac{\operatorname{Re} A(\vec{u})}{|A(\vec{u})|}, \frac{\operatorname{Im} A(\vec{u})}{|A(\vec{u})|}\right) \in \mathbb{R}^{4} .
$$

$$
\text { E.g. } A=I d \rightsquigarrow v=(0,0,0,1)
$$

Then apply any stereographic projection to $\mathrm{v} /\|\mathrm{v}\|$ to get a point $f(A) \in \mathbb{R}^{3}$.
E.g. Projection $(x, y, z, t) \mapsto \frac{1}{t-1}(x, y, z)$ for an exterior torus model.

Nice Properties

The half-turns (elements of order 2) form a meridian disk.
The parabolic elements give a hyperboloid of one sheet tangent to the boundary torus along a meridian.

Parabolics fixing $p \in \partial_{\infty} \mathbb{H}^{2}$ give a straight line.

Implementation

- Main visualizer: Two implementations

■ dumas.io/slview - Three.js particle system

- PySLView - Python/Cairo for larger offline render jobs

■ Utilities etc.

- fuchs.py - Numerically generate a Fuchsian group

■ Triangle group computations - Mathematica, Python
■ Quaternion algebra computations - Magma, Python

Three.js Particle System

