Visualizing Fuchsian Groups David Dumas

Dec 4, 2019 - ICERM Special Interest Seminar

A Fuchsian group is a discrete subgroup Γ < PSL(2, \mathbb{R}).

Fuchsian groups correspond to hyperbolic 2-orbifolds, because $PSL(2, \mathbb{R}) \simeq Isom^+(\mathbb{H}^2)$.

Question: How can we see a Fuchsian group?

Note: Asking about the set Γ and not the quotient \mathbb{H}^2/Γ .

A common approach

Draw orbits (of points, polygons, etc.) in \mathbb{H}^2

Another idea

Draw the entire group!

* Of course we will actually draw a large but finite subset.

Cartan: A connected Lie group is diffeomorphic to $K \times \mathbb{R}^n$ where K is a maximal compact subgroup.

E.g. PSL(2, \mathbb{R}) $\simeq \mathbb{S}^1 \times \mathbb{R}^2 \simeq \mathbb{S}^1 \times \mathbb{D}^2$, an open solid torus.

Within this, Γ is a discrete subset.

Hyperbolic interpretation

 $\mathsf{PSL}(2,\mathbb{R})\simeq\mathsf{T}^1\mathbb{H}^2$ = the unit tangent bundle

The diffeomorphism is the orbit map of a point.

E.g. $A \in PSL(2, \mathbb{R})$ can be identified with a point in the unit disk model of \mathbb{H}^2 , and $\theta \in S^1$ the direction of a tangent vector.

Clifford Torus

The Clifford torus in \mathbb{S}^3 is the set of v/||v|| where

 $v = (\cos(s), \sin(s), \cos(t), \sin(t)).$

It divides $\mathbb{S}^3 \simeq \mathbb{R}^3 \cup \{\infty\}$ into two congruent solid tori, either of which can be taken as a model of PSL(2, \mathbb{R}).

In the *exterior torus model*, it is natural to make the point at infinity correspond to the identity element of $PSL(2, \mathbb{R})$.

Projection Formula

Let $\vec{u} = \frac{\partial}{\partial y}\Big|_0$ in the unit disk model of \mathbb{H}^2 .

For $A \in \mathsf{PSL}(2,\mathbb{R})$ let

$$v = \left(\operatorname{Re} A(0), \operatorname{Im} A(0), \frac{\operatorname{Re} A(\vec{u})}{|A(\vec{u})|}, \frac{\operatorname{Im} A(\vec{u})}{|A(\vec{u})|} \right) \in \mathbb{R}^4.$$

E.g. $A = Id \rightsquigarrow v = (0, 0, 0, 1)$

Then apply any stereographic projection to $v/\|v\|$ to get a point $f(A)\in \mathbb{R}^3.$

E.g. Projection (x, y, z, t) $\mapsto \frac{1}{t-1}(x, y, z)$ for an exterior torus model.

Nice Properties

The half-turns (elements of order 2) form a meridian disk.

The parabolic elements give a hyperboloid of one sheet tangent to the boundary torus along a meridian.

Parabolics fixing $p \in \partial_{\infty} \mathbb{H}^2$ give a straight line.

Implementation

Main visualizer: Two implementations

- dumas.io/slview Three.js particle system
- PySLView Python/Cairo for larger offline render jobs
- Utilities etc.
 - fuchs.py Numerically generate a Fuchsian group
 - Triangle group computations Mathematica, Python
 - Quaternion algebra computations Magma, Python

Three.js Particle System

